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We use Kullback entropy for Young measures to define statistical equilibrium 
states for a two-dimensional incompressible flow of a perfect fluid. This 
approach is justified, as it gives a concentration property about the equilibrium 
state in the phase space. It might give a statistical understanding of the 
appearance of coherent structures in two-dimensional turbulence. 
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1. INTRODUCTION 

The appearance of coherent  structures is one of the most  striking features 
of two-dimensional  turbulence. While there is an obvious tendency in 
ordinary fluid turbulence for the system to try to increase its disorder, at 
the same time there are circumstances in which a sort of "macroscopic"  
order  seems to emerge from what  appears to be "microscopic" disorder. 
The question that  we address here is: how can this behavior  of the fluid be 
explained or  predicted from Euler equations, which govern the dynamics of 
an incompressible perfect fluid? 

The observat ion of the merging of  two like-sign vortices (experimen- 
tally or on numerical simulations ~15'3~ shows that the final "macroscopic"  
state does not  depend on the very variable nature of  the intermediate 
"microscopic" states, due to the complicated deformation of the vortices by 
mutual  straining. This suggests that  an explanat ion of the phenomenon  
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must be of a statistical nature. Of course this conclusion is not new, 
and there have been several attempts to build up some statistical 
hydrodynamics, begining with the pioneering work of Onsager. ~29~ 

We can classify all attempts to apply the methods of statistical 
mechanics to fluid dynamics in two categories. In the first one we find 
several works which have continued Onsager's approach. The idea was to 
approximate the continuous Euler system by a great (but finite) number of 
point vortices. This leads to a finite-dimensional Hamiltonian system, to 
which can be applied the methods of statistical mechanics (see, for exam- 
ple, refs. 14, 25, 27, 31, and 36). Interesting presentations and discussions 
of this approach can be found in refs. 25 and 36. Though very enlightening, 
this approach reveals a severe difficulty. There are many different ways to 
approximate a continuous vorticity by a cloud of point vortices. And 
different approximations can lead to very different statistical equilibrium 
states. So, the thermodynamic equilibrium state that we can associate to 
a continuous vorticity depends dramatically on arbitrary choices (this 
difficulty was underlined by Onsager). 

There is another way to approximate the two-dimensional Euler 
system, in the case of spatially periodic flows: we decompose the vorticity 
into a Fourier serie and truncate the description to a finite number of 
Fourier coefficients. One can prove a Liouville theorem for the truncated 
system (in the phase space of Fourier coefficients, the volume element is 
conserved). This suggests again that the methods of statistical mechanics be 
employed. (19'21) It happens that after the truncation, only two constants of 
the motion remain. They are the energy, and the mean square vorticity or 
enstrophy. Then the Gibbs canonical ensemble corresponding to these two 
constraints is easily obtained. Here also, there is a serious obstacle. When 
we consider the truncated system, instead of the full Euler system, we lose 
the information given by all the integral functionals of the vorticity, which 
are constants of the motion for the full system (this is due to the law of 
vorticity conservation along the trajectories of the fluid particles). As a 
consequence, the significance of the equilibrium states of the truncated 
system for the full one is far from being obvious. If the system were ergodic 
in some sense (this is the underlying hypothesis of any statistical mechanics 
approach), it could only be on the "submanifold" of the phase space 
defined by all the constants of the motion fixed at their initial value. To 
overcome this difficulty, one can try to construct Gibbs states for the full 
Euler system by a limit process when the number of Fourier coefficients 
goes to infinity. A lot of work has been devoted to the study of probability 
measures of the Gibbs form with formal densities given by the enstrophy 
and the energy, and to the problem of the construction of an associated 
equilibrium dynamics; see, for example, ref. 1 and the references therein. 
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We notice also the very interesting contribution of ref. 8, where the authors 
succeeded in constructing a family of Gibbs states associated to the law 
of vorticity conservation along the trajectories of the fluid particles. 
Unfortunately, these probability measures are supported by very "large" 
functional spaces of generalized functions; so that not only are the mean 
energy and enstrophy of these states infinite, but the phase space of 
bounded measurable vorticity functions, on which the classical Eulerian 
flow can be defined, is of null measure. So it is only at a formal level that 
this make sense. 

The main conclusion that can be drawn from this short overview is 
that, although the finite-dimensional approximations of Euler equations 
can provide a good representation of the flow during a finite time, the 
information that the thermodynamics (or long-time dynamics) of such 
systems gives on the behavior of the full system is highly questionable. 

We propose here a new approach to the problem. We work in the 
infinite-dimensional phase space L~(f2) (for the vorticity functions). The 
Cauchy problem for Euler equations is well posed in that space (we have 
existence and uniqueness of the solution for all time). But we do not have 
a Liouville measure, as in the finite-dimensional case. Our main result is 
that for any given initial vorticity function COo, the set of all the vorticity 
functions CO in L~(s which allow all the constants of the motion to be 
equal to their initial values (on COo) is concentrated (in a natural sense, 
closely related to large-deviation theory) about a very particular set, the 
equilibrium set. To find the equilibrium set, we introduce a macroscopic 
description of the small-scale oscillations of 'the vorticity functions by 
means of Young measures. Then, the maximization of the Kultback 
entropy of these Young measures (which was introduced in a previous 
work (32)) enables us to find the equilibrium set. This set is conserved by the 
Eulerian flow. We write down the equation of Gibbs states which is 
necessarily satisfied by the functions of the equilibrium set, and we give a 
condition which ensures that this equation has a unique solution, the 
equilibrium state. 

Besides the fact that we work with the full Euler system and take into 
account all the known constants of the motion, our approach has the 
following advantages. First, we can provide mathematical proofs of the 
essential properties of concentration and invariance. Furthermore, it gives 
clear formulas that permit quantitative confrontation with experiments (38) 
and numerical simulations. (41~ 

822/65/3-4-8 
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2. BASIC RESULTS ON THE T W O - D I M E N S I O N A L  
INCOMPRESSIBLE EULER SYSTEM 

Throughout  this paper we shall work with the solutions of the incom- 
pressible Euler system in an open bounded regular domain f2 of the plane. 
This system is usually written 

ut + (u .V)u  = - V p  

div u = 0 

u - n = 0  on 80  (n normal to Of2) 

u(O, x) = Uo(X) 

Here u(t, x) is the velocity field of the fluid and p the normalized pressure. 
For  the sequel, we find it convenient to introduce the scalar vorticity 

co = curl u, and we write the system in the velocity-vorticity formulation: 

(E) f 
co, + div(cou) = 0 

co(0, x) = coo(X) 3 

curl u = co 

div u = 0 

u.n=O on 8 ~ J  

(El)  

(E2) 

This Euler system appears as a transport equation (El)  coupled with the 
elliptic system (E2). 

The system (E2) 
function if, defined by 

is classically solved by introducing the stream 

--A~, =co  

~ = 0  on 8Q 

Then u = curl ~ gives the solution of (E2). 
On the other hand, (El)  is solved by introducing the Lagrangian flow 

~o, defined by 

d 
d5 @t(x) = u(t, (Pt(x)) 

~Oo(X)=X 

One can easily check that the vorticity is convected by the flow, that is, 
co(t, q~,(x))= coo(X), for all x in f2. 
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It is well known  (7'18'42) that if co o is a smooth function on ~,  (E) has 
a unique classical solution for all time. Although these classical results do 
not permit us to take for initial data any coo in the space L~ we can 
define weak solutions (in the distribution sense), and by a limit process we 
get the following result well suited to our needs. (42) 

Theorem 1. For  coo in L~ we have a unique weak solution of 
(E), co(t, x) in the space L~( ]0 ,  + o o [  xf2). Furthermore, co(t, x) and the 
corresponding u(t, x) and ~ot(x) satisfy: 

(i) co(t, 9,(x)) = coo(X), for almost all t, x in ]0, + oo [ x s 

(ii) lu(t, x) - u(s, y) l  ~< c(~)llcooll  + [ o ' ( I t  - s l)  + ~r(Ix - y l ) ] ,  where 
a(e) =e(1 + ILog el). 

We will say that u is quasi-Lipschitz in t and x. 

(iii) The mappings ~0 t : f2 ~ s are area-preserving homeomorphisms 
satisfying 

I~o,(x)-~o,(y)l ~ Lx-  yl e-M' 

with M = 2c(f2)Ilcoo[l oo. 

We shall take L~176 as phase space and define the Eulerian flow qs: 
L ~176 --* L ~ by ~tco(x) = co(~0,m(x)). 

One easily checks that the following functionals are conserved by the 
flow: 

(i) The energy E(co) = �89 ~e u 2 dx = 1 ~a ~Pco dx. 

(ii) ~ef(co(x)) dx, for any continuous function f on R. 

We clearly define a positive bounded Radon measure no+ on R by 

<~o,, f)= f f(co(x))dx 

~o is the distribution measure of co. 
So, we can say that 7c~ is conserved by the flow, i.e., 

(iii) If s is not simply connected, there are other constants of the 
motion given by the circulation around the obstacles. 

(iv) If f2 is a ball B(0, R), we must take into account the angular 
momentum with respect to 0: 

fo lfo x A u(x) dx= ~ (R2-  x2) co(x) dx 
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and also the two components of the linear momentum ~ xCO(x) dx in the 
c a s e  ~ = R 2. 

It can be shown (37) that there are not any other invariant functionals 
of the form ye F(x, u(x), Vu(x)) dx than those we already knew. 

In the case of stationary solutions, (E) reduces to 

div(CO curl ~O) = 0 

This is satisfied, for example, if CO = f ( ~ ) ,  where f is a continuous function, 
or if CO is rotation invariant. 

To conclude this short section, let us notice that despite the fact that 
Euler equations appear as an infinite-dimensional Hamiltonian system (see 
ref. 3 for the Lagrangian viewpoint and ref. 28 for the Eulerian viewpoint), 
we do not know how to get something like a Liouville measure on the 
phase space L~(g2). 

3. MACROSCOPIC  DESCRIPTION BY YOUNG MEASURES 

Let us consider the fluid motion corresponding to some initial data 
COo(X ). Denoting m =  IlCOoll~, we know that, for all t, CO(t) is in Lm ~ = 
{CO~L~ll IlCOll~ ~<m}. 

Let us suppose, for example, that COo consists of a finite number of 
patches of uniform vorticity. Then we know that the boundaries of the 
patches become in general more and more intricate as time goes on, but 
the area of each vorticity patch is conserved, as well as the total kinetic 
energy of the system. Since the vorticity contours become so intricate, we 
are not really interested in the exact vorticity field. Indeed the velocity field 
results from an integration of the vorticity, so that it does not depend on 
the fine-scale fluctuations of the vorticity: it depends only on its local 
average. In fact, to exploit the whole information given by the constants of 
the motion, we are led to consider a macroscopic description of the system 
by introducing the local probability distribution of the different vorticity 
levels in a small neighborhood. Therefore, we define a macroscopic state as 
a field of these local probabilities, while an exact vorticity field is called 
here a microscopic state. 

In other words, we introduce a macroscopic description by immersing 
the phase space Lm~(g2) in the set of Young measures on s x I - -m,  m]. 

Let us recall that Young measures ~ are a natural way to generalize 
the notion of measurable mapping from s to [ - m ,  m]: at any point xeg2, 
we no longer have a well-determined value, but only some probability 
distribution on [ - m , m ] .  In other words, a Young measure v is a 
measurable mapping x ~ v x from Q to the set M I ( [ -  m, m ]) of the Radon 
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probability measures on [ - m ,  m] endowed with the narrow topology 
(weak topology associated to the continuous functions on [ - r n ,  m]).  

Clearly, v defines a positive Radon measure on Q x I - m ,  m] (which 
we will also denote by v) by 

(v, q)) = fa (v~,f(x,  .)) dx for f(x,  y ) e C ~ ( Q x [ - m , m ] )  

which is the space of continuous, compactly supported, real functions on 
f2 x I - m ,  m]. Moreover, for f (x)  e Co(f2), we have 

(v, f ) =  fa f (x)  dx 

that is to say, the projection of v on f2 is dx. 
Applying the desintegration theorem of Jirina, (17) we see that this gives 

an equivalent definition of Young measures. That is, for any positive 
Radon measure v on f2 x I - m ,  rn] whose projection on f2 is dx, there is 
a measurable mapping x ~  vx satisfying 

( v , f ) = f  (Vx, f ( x , . ) ) d x  for f ~Cc ( f2xE-m ,m] )  

The mapping x~.* Vx is unique up to the dx-almost everywhere equality. 
To any measurable function co: f2 ~ [ - r n ,  m], we associate the Young 

measure 60,: x ~ 6o~(x>, Dirac mass at c0(x). We shall denote by M the 
convex set of Young measures on f2 x [ - m, m ], and we recall some useful 
properties. 

(i) M is closed in the space Mb(f2x [--rn, m] )  of all bounded 
Radon measures on f2 x I - m ,  m] (with the narrow topology), the narrow 
topology is equal on M to the vague topology (associated to the 
continuous compactly supported function), and this topology is metrizable. 
Furthermore, as [ - -  rn, m ] is compact, M is compact. 

(ii) By the mapping co++,6o, we identify Lm~((2) to a dense subset 
of M. 

To any Young measure v, we can associate a mean function ,7 by 
~(x) =SY dvx; of course, ~eLm~(f2), and the mapping v ~  is continuous 
from the narrow to the weak .-topology. 

Now, for a given initial data coo, we consider the Young measures 
6o,(t). Since M is compact and metrizable, we can find sequences tn ~ +oe 
such that 6o~0,) converges narrowly toward some Young measure v. It 
follows that co(tn) converges weakly toward ~ and E(co(t,))~ E(~), which 
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is the energy of the Young measure v (notice that it depends only on the 
mean value and that the microscopic oscillations have no energy). 

Now the narrow convergence implies that for any continuous function 
f on I - m ,  m], we have 

f f(e)(tn))dx~fa ( v x , f ) d x  

and from Sa f(co(tn)) dx = (z~o,0, f ) ,  we get ~o,o = Sa vx dx, and we shall say 
that v is a mixture of coo. So, we see that the limit v contains the whole 
information given by the constants of the motion. 

Let us now describe how the Eulerian flow extends to the extended 
phase space M. 

Proposit ion 2. There is a unique semigroup ~t of homeo- 
m0rphisms of M extending ~b t, that is, 

~,(3~o) = 3~,(o,) for all co in L~(s 

ProoL Let us define ~ ,  on M by ~,(v)x = v%,(x), where ~p, is the 
Lagrangian flow associated to the initial vorticity g. As 4 ,  is a semigroup, 
then ~t  is a semigroup, too. We easily check that ~t  is one-to-one. And 
now we prove that ~t  is continuous on M. 

Let v n be a sequence converging toward v and f (x ,y )~  
C~(s x I - m ,  m]);  we have to prove that 

(~,,(v )x,f(x, .)) dx--~ 

And by change of variables 

( ~t(v)x, f(x, ")) dx 

fo (v~,, f(q~'](x'), .)) dx' ~ fa 

We write the first term: 

(vx,, f(~0,(x'), .)> dx' 

fo (V~x, f(q~7(x), . ) - f ( ~ o t ( x ) ) , - ) )  dx + fo (v~, f(~o,(x), .) dx 

and the result follows from the uniform convergence on s of ~o~' toward ~o~ 
(as 9n converges weakly toward f; see ref. 10). The uniqueness of ~t  follows 
from the density of L2((2)  in M. | 

Remark. Heuristically, we can say that the microscopic oscillations 
are merely frozen and transported by the mean velocity. 
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For the sequel, the space L~ will be the space of microscopic 
states, and the set of Young measures with bounded support the set of 
macroscopic states. 

4. C O N C E N T R A T I O N  A N D  ENTROPY FOR Y O U N G  
M E A S U R E S  

All the sequel is based on the following fact, which we present first 
heuristically. 

Let us suppose that we "randomly" choose a microstate ~o in the sub- 
set of the functions of L~(s satisfying E(co) = E(coo) and rt~ = zo)0- Then 
"with a high probability" 6~o will be very close (in the narrow topology) to 
a well-determined Young measure v*. In other words, to a great majority 
of the microstates in the subset given above, we can associate a unique 
macrostate v*. Of course this presentation is oversimplified and to have a 
general result, v* has to be replaced by a set d ~ of macrostates. We find 
the set g* by maximizing a convenient entropy functional. 

To give a precise meaning to these considerations, we now introduce 
some technicalities. We may consider the following definition and concen- 
tration theorem as a convenient reformulation of well-known results from 
large-deviation theory. (5'13) 

Let rc o be a given probability measure on [ - m ,  m] and 7 r = d x |  
the associated Young measure. Then we define a notion of concentration 
by means of piecewise constant functions. Let 5f be an equipartition of (2, 
that is, f =  {Xi[i-= 1 . . . n ( f ) }  is a finite measurable partition of f2 such 
that IXil = IJCJ[ for all i, j. Define the diameter of f :  

6(3f) = sup sup{ Ix - x'l Ix, x '  E X i} 
i 

Given Yl ..... yne  I - m ,  m] n, we denote f ( Y l , . . . , Y , , )  the Young measure 
associated to the measurable step function equal to Yi on the set X i. On 
[ - -m,  m] n we put the probability measure @n rio and then consider 5~ as 
a random variable taking its values in M (notice that ~ is continuous from 
[ - m ,  m]"  to M). 

Definit ion.  Let g, g*  be subsets of M. We say that g*  concen- 
trates conditionally to g iff: 

(i) VW': 

1 
lim i n f - -  Log P r o b ( ~  e gw') > - o o  
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(ii) VW*, 3~>0 ,  3W, VW', 3q>O, V~" such that 6(~)-%<q: 

Prob(X ~ g w \ 8 ~ . )  

P r o b ( ~  e gw,) 

Here W*, W, W' denote open neighborhoods of 0 (for the narrow 
topology) in Mb(~Q • [ - m ,  m]) and gw= (g + W)c~ M. 

This rather sophisticated definition needs some comments. 

Remarks: 

1. Heuristically, it means that a great majority of piecewice constant 
measurable functions which are in a neighborhood of g are in fact in a 
neighborhood of g*. 

2. To have a consistent definition, we have to widen the sets g, g* 
into open neighborhoods. Notice that P r o b ( ~  e g)  is not defined for an 
arbitrary set g; and even if E is a Borel subset, it can be zero. 

3. The assumption (i) ensures that when 6(5f)--,0, P r o b ( ~ c g w , )  
cannot be too small. 

From a previous work, we know the entropy functional which enables 
us to find the concentration sets g,/32,33) It is the Kullback entropy, given 
on M by 

f av / (~(v) = - L o g  Y~ dv 

if v is absolutely continuous with respect to rc 

K~(v) = - o e  otherwise 

And we can now give the following result: 

Concentration Theorem 3. (32'33) Let g be a closed, nonempty 
subset of M, and g*  the subset of g where the functional K= achieves its 
maximum value on & Then g* concentrates conditionally to g. 

Remarks. 

1. It is well known (5'13) that K~ is a concave upper semicontinuous 
functional. Moreover, K~ is strictly concave on the domain 
{v [K~(v)> - o e  }, and sup-compact; that is to say, for any real number b 
the set {vlK,(v)>~b} is a compact (convex) subset of M. So, we deduce 
that ~* is a nonempty closed set. 

2. The concentration property given here is slightly stronger than the 
one we define in refs. 32 and 33. Nevertheless, one can easily check that the 
proof given in ref. 33 actually gives this stronger result. 
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3. Our  notion of concentration depends on the choice of a basic 
probability measure % on [ - m ,  m].  This choice of % gives the suitable 
entropy functional (K~ with re= d x |  for the problem at hand. For  
example, when we work with mixtures of a given vorticity function co, we 
obviously take ~o = ( 1 / ] D I ) ~ .  

4. The case where g*  is not reduced to a point corresponds to a 
phase transition situation. 

5.. Let co: D ~ [ - m , m ]  be a measurable function and y a M  a 
mixture of co. We can say that v performs a mixing of the values of co while 
they are globally preserved; for example, zc=dx|  (1/[DI)%) is a mixture 
of co. 

Let us suppose now that co takes only n distinct values al,...,a,, and 
denote D i=  {x E t? [ co(x) = a/}. 

We have 

i = l  

If v is a mixture of co, one readily sees that there are n nonnegative 
measurable functions ei(x) satisfying 

~ ei(x) = 1 and 
i = 1  

such that 

fa ei(x) dx = If2il 

Vx = e l (x) 'Sal  + "'" + e . ( x ) 8 o ~  

for almost all x in D. 
A straightforward computat ion gives for the Kullback entropy 

K~(v) = - fa ~ ei(x) Log ei(x) dx + ~ I~'1 Log ]f2i[ 
i i 

with the convention 0 Log 0 = 0. 
We see that up to an additive constant, K,~(v) is equal to the classical 

Boltzmann mixing entropy. 
We come now to a property which is essential in our program; that is, 

the conservation of the concentration property by the extended Eulerian 
flow on M. 

Proposition 4. If g*  concentrates conditionally to d ~ then, for all 
t, ~ , ( g * )  concentrates conditionally to ~ , (g) .  
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Proof. Let us suppose that g* concentrates conditionally to g. We 
know that ~,  is a homeomorphism and M is compact. Then ~t and ~ 7  I 
are uniformly continuous and it suffices to prove: VW*, 3e>0,  ~W, VW', 
3~/, VY" such that 6(Y')~< q, 

Prob(~ e - * 

e r o b ( ~  e , ~ ( ~ , ) )  

To prove this point, we make use of an extended form of the Cramer- 
Chernoff inequalities. (23) 

P r o p o s i t i o n  5. Let A be a Borel subset of M; then we have 

1 
lira sup LogProb(~;eA)<~supK~(v) 

lim i n f - ~ l  Log Prob(~ e A) >~ sup K.(v) 

From this proposition, we get 

1 
lim sup n - ~  Log Prob(~ 6 ~ , ( r  ~< sup Kn(v) 

v �9 ,~t(~w\,e~v,)  

~< sup K.(v) 
v �9 ( ~ t ( , ~ 2 W \ ~ I / 2 ) W , )  

Now we easily verify that K. is conserved by ~, [i.e., K~(~,(v))= K.(v), 
for all v], and then 

sup 
v �9 '~ , ( r  w*) 

K.(v) = sup K~(v) 
V E ~ 2 W \ g ~ 1 / 2 )  W* 

inf ) - ~  Log Prob(~ e g2w\g(*/2)w*) lira 
n(~ ) 

So, we have 
1 

lira sup n ~  Log erob(2~ e ~,(~w\g~v*)) 

�9 1 
~< lim lnf-7-~, Log Prob(5~ ~ Eew\~(*l/2)w*) 

nt~ ) 

A similar computation gives 

lira inf Log Prob(X e ~,(gw')) >~ lim sup ~ Log Prob(~ e 8(1/2)w,) 



2D Perfect Fluid Dynamics 543 

This',, of course, implies (i). And we have 

lira inf 1 Log P r o b ( ~  �9 ~ (gw , ) )  - lira sup 1 Log Prob(;~ �9 ~,(&v\g**)) 
?t ?/  

~> lira sup 1 Log P r o b ( ~  e ~(~/2)v/,) - lira inf 1 Log Prob(~@ e g2w\g(*~/z)~,/*) 
n n 

and this last term is ~>e by the hypothesis that g* concentrates condi- 
tionally to do. The result readily follows. | 

5. I -QU IL IBRIUM STATES 

Suppose given an initial datum co o in L~(f2). It follows from the 
concentration theorem that the microstates co satisfying ~ = ~ o 0  and 
E(co)=E(coo) are concentrated about the set g* of the macrostates v* 
which are solutions of the variational problem: 

(V.P.) K~(v*)=maxK~(v) 
v ~ d  ~ 

where the set do is 

~ = {v ~ M[ E(f) = E(coo) and fa v~ dx = ~oo} 

and rc=dx| where ~0 = (1/IQt)rc~o0. 
One easily checks that the set g is closed (this is a straightforward 

consequence of the complete continuity of the mapping c o ~ O ) .  And we 
have seen that do* is nonempty and closed. 

The set g is obviously conserved by the flow [i.e., ~,(do)= C], and 
since K~ is also conserved by ~ ,  we have 

~,(do*) = do* 

We shall call the set d o* = {f* Iv* e E* } the equilibrium set corresponding 
to the initial datum co o. Of course, we have 45~(dom) -- dom" 

In the particular case where d ~ {v*}, this implies that f*  is a 
stationary solution of the Euler equations, the equilibrium state. 

Now, to proceed further in the determination of the equilibrium set, 
we have to solve (V.P.). 

First, we write down the equation of the Gibbs states which is the 
equation satisfied by the critical points of the functional K~ on the set do. 

Let us assume that v* is a solution of (V.P.) such that K~(v*) > - or. 
Then v* =p*(x ,  y)~, where p * e  L~(~). Furthermore, we shall assume that 
C~ i> p*(x, y)/> Co > 0, ~-a.e. 



544 Robert 

For p ~ L1(7c), p/> O, let us denote 

K,~(pn) = - f p Log p S(p) dn 

Then, S(p*) is the maximum value of S(p) on the linear submanifold of 
Ll(n) defined by 

f p(x, y) dno(y) = 1, dx-a.e. 

f p(x, y) = 1s n0-a.e. dx 

and satisfying the nonlinear energy constraint 

E(p)= E ( f  yp(x, y) dno(y)) = E((no) 

Then, it is easy to check that the functionals S(p) and E(p) are con- 
tinuously differentiable in a neighborhood of p* in the space L~ And 
we have, for 6p~L~(n), 

- - f  (1 + Log p* )6p dn(x, y) 6S= 

fiE= + f ~,*(x) y fp dn(x, y) 

where ~* is the stream function associated to 

o~*(x) = f yp*(x, y) d~o(y) 

Application of the Lagrange multiplier rule gives the existence of a 
parameter/~ such that 6S = fl6E for any variation 6p e L~176 satisfying 

f 6p(x, y)dno(y)=O, dx-a.e. 

and 

f 6p(x, y) dx = O, no-a.e. 
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Tedious but classical computations then give 

1 p*(x,  y)  = ~ e-~(Y)-  ~yO*~xl 
L tX)  

where ~(y) is some continuous function, and 

Z ( x )  = I e ~(Y) ~yo*(x) drco(y ) 

So, we see that the stream function ~b* necessarily satisfies the following 
equation of Gibbs states: 

(6.S.E.) 
~ - 1  d LogZ  

=0  on r 

whe, re Z ( ~ ) =  z ( - / ~ ) ,  and we denote 

z(~) = f e ~(Y)+r d~o(y) 

The function Log z(~) is strictly convex; indeed, we have 

d 2 1 
d~ z Log z =--z2 [ z z " -  (z') 2 ] 

and this last term is strictly positive by application of the Cauchy Schwarz 
inequality: 

Then we get the striking result that for a Gibbs state the function e )=f (O)  
is either strictly decreasing (case/3 > 0), strictly increasing (case/~ < 0), or 
perhaps a constant (if/~ = 0). Furthermore, we have 

z z 
d~ 2 L ~  ~<--~<max{y21y~SupprC~ 

and we have the following existence-uniqueness result for (G.S.E.). 
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Propos i t ion  6. F o r - f i m a x { y  21y~Suppno}<21,where21is the  
first eigenvalue of the operator - A  (associated to the Dirichlet boundary 
value condition), the equation (G.S.E.) has a unique solution 0* in the 
Sobolev space Ho1(s 

ProoL As the right-hand side of (G.S.E.) is a continuous and 
bounded function of 0, the existence of a solution follows in a standard 
way by Schauder's fixed point theorem (of course for all values of fl). 

Uniqueness for fl satisfying the above condition follows from the fact 
that the solutions of (G.S.E.) are the critical points of the functional 

l f~  l f o  F ( 0 ) = ~  (V0)2dx+~ LogZ(O)dx, def inedfor0eH;(O) 

A straightforward computation gives for the second variation of the 
functional F 

1 
+ ~ i ~ Log z ( -  fi0 )(60 )2 dx 

The classical inequality 

;o 
then gives 

(v(~o) 2 dx > "~1 f Q (60) 2 dx 

1 [21 d2 62F>~; a +fl-d~Cogz(-flO)](60) 2 dx 

For fl >~ 0, we have 

and for fl < 0 

2 1 6 F > ~  (21 

32F~>T ;a (a0)2dx 

+ fl max{y2l y e supp no}) fa (60)2 dx 

Thus, the functional F is strictly convex on the space H~(g2), and a critical 
point 0" is necessarily the unique minimum of F. | 

Now, let us go back to the variational problem. We have seen that if 
v* is a solution of (V.P.) (such that Cl>~p*>>.Co>O, g-a.e..), then the 
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corresponding stream function ~b* satisfies (G.S.E.) for some Lagrange 
multipliers ~(y), ft. 

Of course, the values of the multipliers ~(y), fl depend on the values 
of tlhe constraints 

Eft*)  = E(COo) (1) 
/" 

j v* dx = ~ 0  (2) 

Conversely, let us choose any continuous function ~(y) and a real 
number fl satisfying the condition of Proposition 6. Let ~b ~'~ be the unique 
solution of the (G.S.E.), p~'~ the corresponding density function: 

1 e -~(Y)- flYo~"(x) 
p~'~(x, y) = 2 and v ~'/~ = p~'/~rc 

Notice that there is no reason for the macrostate v ~'' to satisfy the 
constraints (1) and (2), since ~, fl are arbitrarily chosen. In fact, v ~'' is the 
solution of the following variational problem. 

P r o p o s i t i o n  7. Let e(y), fl be given (fl satisfying the condition of 
Proposition 6). Then v ~'' is solution of the variational problem 

where 

K~(v ~'p) = m a x  K~(v) 

ProoL One easily sees that p~'~ is a critical point of the functional 

y- (p)  = S(p)  - fiE(p) - I ~(y) p(x, y)  d~z 

on the linear submanifold of L~(~z) defined by 

f p(x, y) d~zo(y) = 1, dx-a.e. 

Then, we distinguish two cases. 
For fl~>0, since S(p) is strictly concave and E(p) is convex, J ( p )  is 

strictly concave and p~'~ is the unique maximum of Y-. 
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As a consequence S(p ~'~) >1 S(p), for all p satisfying 

E(p)=E(p ='e) and laP(x, y) dx=f~,p='e(x, y) dx, =o-a.e. 

The case fl < 0 is less straightforward. First, we compute the second 
variation of the functional J-  on the open convex set of L~176 

U= {peL~~ 

We get 

1 (ap) ~ d~_/~  

where &o(x)=~yap(x, y)drco(y), and 6~ is the corresponding stream 
function. 

Then, using the classical inequality 

1 f ac, awdx<-Tlf (ao)2dx 

we obtain 

l (aP)2 dz~-2~ fQ (5m)2 p a 2 J ~  - o 

Furthermore, we have 

E; 12 (&o)2 ~< m a x { f  [ y e  supp ~o} 16p[ d%(y) 

and the Cauchy-Schwarz inequality yields 

(ap)  2 
lapl d~zo(y) <~ f &co(y) 

P 

from which 

1 (1 +f7  max{y2l yesupp  } ) f ~ [ f  ]~Pld~o(Y)] 2dx a2Y - ~ - ~ rCo 

Then we see that a2Y - <0  for all 6p ~0,  and the functional ~ is 
strictly concave. Thus, the critical point p~'Z is the unique maximum of Y. 
We conclude, as above, that it gives a maximum entropy state. | 
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Remark. We define 

k(y) = ~ p~'#(x, y) dx 

k(y) is a strictly positive continuous function. Let us denote fro = k(y)~o, 
and ~ = dx @ ~o. 

For any mixture v of [g21 ~o, we have 

K~(v) = Ks(v) - ]f2l f k(y)  Log k(y) d~o(y) 

Thus v ~,B gives also the maximum value of K~(v) among the mixtures 
of ]Q] if0 with energy E(g~'~). 

6. C O M M E N T S  

1. Of course, any solution of the (G.S.E.) is a stationary solution of 
the Euler equations. We may wonder about the stability of these solutions. 
It is not hard to see that under the condition of Proposition 6, Arnold's 
classical estimate (4) applies and gives the stability of the solution in the 
enstrophy norm: 

Let ~* be the unique solution of (G.S.E.) and co* the corresponding 
vorticity; then for any coo in L~(~?), we have 

f (O,coo-co*)2dx<~,cfo (coo-co*)2dx, forall  t 

Furthermore, we can prove that any mixture v of co* such that 
E(v) = E(co*) is equal to 6~.. So, if we repeat the process, starting with co*, 
we shall get co* again as an equilibrium state. 

2. When some supplementary constants of the motion occur, we 
must take them into account. This is the case for the circulation around the 
obstacles when f2 is not simply connected, or the angular momentum when 
f2 is a ball. This leads to some minor changes in the equation of Gibbs 
states.(3s) 

3. The description of the set of solutions of (G.S.E.) for all the values 
of the parameter/3 is a complicated question which seems to correspond to 
the diversity of coherent states that we can observe in experiments. (38) In 
the particular case of a vortex patch, it has been shown (12~ that, when - / /  
reaches a positive critical value, a bifurcation occurs with the appearance 
of another branch of solutions (see also ref. 41). 

822/65/3-4-9 
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4. As/~ is the Lagrange multiplier of the energy constraint, it is the 
inverse of a temperature. And Proposition 6 proves the existence of equi- 
librium states with a negative temperature (this phenomenon was foreseen 
by Onsager(29)). We show now how the existence of such states might be 
relevant to describe the concentration of vorticity into coherent structures. 

Let us consider the case where we have only positive vorticity. As we 
have seen, an equilibrium state is characterized by a relation co=f(O).  
Since - A ~  = co and ~ = 0  on ~?f2, the stream function ~ is everywhere 
positive and reaches its maximum value at some point x* in O. 

Then for /3 > 0, as we have seen, f is strictly decreasing and as 
decreases from x* to the wall ~O, co increases from x* to the wall. So, we 
see that, in this case, the vorticity is essentially located at the wall; while 
for/3 < 0, the same argument shows that the vorticity is concentrated at the 
vortex core (about x*) (a more detailled discussion, at a physical level, can 
be found in ref. 35). 

5. The motivation for the study of coherent structures in two-dimen- 
sional flows comes mainly from geophysical applications. Jupiter's Great 
Red Spot is the most spectacular example of such a structure. (15'39) 

The physical relevance of this theory is presently the subject of 
experimental investigations (38) and numerical simulations (the results given 
in ref. 41, in the case of a shear layer instability, show a very good agree- 
ment). 

6. Of course, our approach is based on some underlying assumption 
of ergodicity for the flow qs,. As we have no natural invariant measure on 
the phase space L~(f2), we cannot speak of ergodicity in the usual sense. 
A dynamical justification of the method could be given by a result of the 
following form: For any co in a dense open set (for the weak .-topology) 
of L~(O), ~,co spends almost all its time in any weak ,-neighborhood of 
the set g*  previously defined. That is: for all V, neighborhood of 0 in the 
weak .-topology, 

1 
lira ~ m e s { t ~  [0, T] I~b,co~g* + V} = 1 

T - * c o  

7. A natural question is to relate our approach to the traditional 
Gibbsian method of statistical mechanics. 

Let us denote by Pa~ the probability measure (on the space of Young 
measures M) which is the image by the mapping 5~ of the measure 
d~o(yl)"" drco(yn) (with the notations of Section 4). Our method is based 
on the fact that the family P~r has the large-deviation property (13) with 
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constants n(~r) and entropy function K,~(v) (cf. Proposition 5). We use 
this property to prove our concentration result when we restrict to the 
microstates which satisfy to the constraints given by the constants of the 
motion. In this sense, we may say that our approach is microcanonical. 

Since the first submission of this work, a paper by Miller (24/ has 
appeared which derives the same result by a mean-field approach. We can 
see that behind Miller's arguments (which work at a more physical level) 
there is also a large-deviation property in the space of Young measures. In 
fact, Miller considers, for/3 fixed, the Gibbs measures: 

( l /Z)  exp[ -n(Y ' ) /3E(~) ]  dTro(yl).., drco(yn) 

Let us denote by Qe. the probability measures on M, image by ~ of these 
Gibbs measures. We can see, using Varadhan's theorem on the asymptotics 
of integrals, (13) that, when/3 satisfies the condition of Proposition 6, Baldi's 
large-deviation theorem (6) applies to the family Qa- and ensures a large- 
deviation property with conStants n(ff) and entropy function 

J ( v )  = K ~ ( v )  - / 3 E ( v )  - sup EK.(v) -/~E(v)] 
v ~ m  

Thus.~ when we restrict attention to the microstates which satisfy the 
constraint rco,=~o0, we get a concentration property about the unique 
solution v* of the variational problem: 

J(v*)=max {J(v)lv~M, f vxdx=Tzo~o} 

Of course, this problem yields the same (G.S.E.) for the critical points. We 
see', that the difference from our approach lies in handling here the energy 
constraint in a canonical way. Note, however, that when/3 does not satisfy 
the condition of Proposition 6, the functional J(v) might not be strictly 
convex and Baldi's theorem does not apply. The above justification fails in 
that case. 

Note here that the n-dimensional Euclidean volume on the space of 
pie, cewise constant vorticity functions is not conserved by the Euler flow. 
Thus, the method is not clearly related a priori to the dynamics of the 
system. It is the conservation of the concentration property by the flow 
which provides some compatibility of the statistics with the dynamical 
system. 

It may seem more natural to carry out the thermodynamic limit in the 
weak space L~163 The large-deviation property for the image measures is 
easier to obtain in this framework, but unfortunately, doing so, we cannot 
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take into account the constraint n~o = no~0. The Young measures framework 
is well suited to take into account the whole set of constraints; furthermore, 
it provides a convenient heuristical picture of the complex time evolution 
of the vorticity functions. 

Altogether, we believe that Baldi's large-deviation theorem, applied in 
the Young measure framework, provides a powerful tool to carry out the 
statistical mechanics of a class of infinite-dimensional Hamiltonian systems. 
This is now the object of active investigation; see, for example, refs. 23 and 
40 for the case of quasigeostrophic models. 
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